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Abstract In this work, we first present a semianalytical method for the evolution of linear fully dispersive
transient waves generated by an initial surface displacement and propagating over a constant depth. The
procedure starts from Fourier and Hankel transforms and involves a combination of the method of station-
ary phase, the method of uniform asymptotic approximations and various Airy integral formulations.
Second, we develop efficient convolution techniques expressed as single and double summations over the
source area. These formulations are flexible, extremely fast, and highly accurate even for the dispersive tail
of the transient waves. To verify the accuracy of the embedded dispersion properties, we consider test cases
with sharp-edged disturbances in 1-D and 2-D. Furthermore, we consider the case of a relatively blunt
Gaussian disturbance in 2-D. In all cases, the agreement between the convolution results and simulations
with a high-order Boussinesq model is outstanding. Finally, we make an attempt to extend the convolution
methods to geophysical tsunami problems taking into account, e.g., uneven bottom effects. Unfortunately,
refraction/diffraction effects cannot easily be incorporated, so instead we focus on the incorporation of lin-
ear shoaling and its effect on travel time and temporal evolution of the surface elevation. The procedure is
tested on data from the 2011 Japan tsunami. Convolution results are likewise compared to model simula-
tions based on the nonlinear shallow water equations and both are compared with field observations from
10 deep water DART buoys. The near-field results are generally satisfactory, while the far-field results leave
much to be desired.

1. Introduction

Tsunamis generated by seismic activity in the deep ocean are typically transient wave trains propagating
large distances over almost constant depth. During this propagation, nonlinearity is relatively small and the
wave train can be assumed to be linear. The front of the wave train moves approximately with the linear
shallow water celerity, while the leading wave is influenced by weak dispersion. Behind the leading wave, a
tail with more dispersive waves will appear and dispersion will gradually become more and more important
with the distance from the leading wave. The significance of the tail depends on the spatial gradients of the
initial disturbance: Very sharp disturbances will immediately generate strong tails with highly dispersive
waves, while blunt disturbances will produce only a single leading wave. During the propagation over large
distances, however, transient waves will evolve under the accumulated influence of dispersion, leading to a
gradual change of representative wave periods and a stronger and stronger dispersive tail.

Weak dispersion can typically be handled by any standard Boussinesq model and these are now being used
for tsunami modeling on a regular basis [see e.g., Løvholt et al., 2012; Glimsdal et al., 2013; Grilli et al., 2013].
It is, however, still common to use models based on the nondispersive nonlinear shallow water (NSW) equa-
tions [see e.g., Tang et al., 2012; Ren et al., 2013]. In principle, the NSW equations cannot correctly predict
the temporal evolution of the transient waves, but it has to be admitted that these models have been rela-
tively successful in simulating geophysical tsunamis.

In this work, we shall focus on transient linear dispersive water waves, induced by an initial localized disturb-
ance and propagating over a constant depth. Our goal is to develop a fast, flexible, and accurate semianalyt-
ical model for the evolution of these waves and to incorporate full dispersion in this process.
Fundamentally, this corresponds to the classical Cauchy-Poisson problem, which has been described by,
e.g., Lamb [1932], Wehausen and Laitone [1960], and LeBlond and Mysak [1978]. First of all, the surface
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elevation can be expressed by integral transforms relating the fluid motion at time t and position x to the
prescribed initial disturbance. Second, these transforms can be approximated by asymptotic expansions
valid for relatively large values of time and space from the disturbance. Classical solutions to this problem
can be found in, e.g., Kajiura [1963], Whitham [1974], and Newman [1991]. These solutions typically describe
the evolution of the leading wave near the wave front (in which case, weak dispersion can be assumed)
or the trailing waves far behind the wave front, in which case, the method of stationary phase can be uti-
lized. The classical solutions are nonuniform as they cannot describe the complete range of wave numbers
present in the wave train.

Clarisse et al. [1995] were the first to develop uniform asymptotic solutions to the Cauchy-Poisson problem
in both one and two dimensions, which implies that these solutions were uniformly valid for the complete
interval of wave numbers (i.e., from weak dispersion to full dispersion). This was a remarkable achievement,
but unfortunately their work has attracted very little attention. Today, 20 years later, their publication
has obtained only six references according to Web of Science [e.g., Kuznetsov, 2006; Ursell, 2007; Sekerzh-
Zenkovich, 2009; Glimsdal et al., 2007, 2013], none of which have actually utilized the findings of the original
paper. Several reasons for this lack of attention could be suggested: First, the paper was very condensed
and the method rather cumbersome. Second, no applications were presented leaving the full potential of
the theory implied, rather than directly demonstrated. More recently, Berry [2005] presented a similar, but
more elegant, derivation without being aware of the original work by Clarisse et al. [1995]. Berry provided a
few applications but they were limited to idealized narrow Gaussian disturbances.

Our first objective in the present paper is to rederive and discuss the classical as well as the uniform asymp-
totic theory with the proper links to Whitham [1974], Clarisse et al. [1995], and Berry [2005]. In this connec-
tion, we start from the classical integral formulations in terms of Fourier and Hankel transforms and utilize a
combination of the method of stationary phase, the method of uniform asymptotic approximations and var-
ious Airy integral formulations to obtain efficient but accurate impulse-response functions. Section 2 covers
the case of an initial 1-D surface elevation, while section 3 covers the case of an initial 2-D radially symmet-
ric surface elevation. Section 4 covers the variables of uniform approximations and discusses their variation
behind, near, and beyond the front of the wave train.

Our second objective is to extend the uniform asymptotic theory beyond the achievements of Clarisse et al.
and Berry by developing efficient convolution procedures in 1-D and 2-D in order to solve problems with
general configurations of the initial disturbance. To this end, section 5 introduces efficient convolution tech-
niques to be used for problems on a constant depth, while section 6 presents a number of test examples
where the 1-D and 2-D approximations are applied and verified. This includes an initial 1-D rectangular dis-
turbance, an initial 2-D square disturbance, and an initial 2-D Gaussian disturbance. The convolution solu-
tions are compared with numerical results from models solving linear high-order Boussinesq equations
[Madsen et al., 2002] as well as linear shallow water equations [Ren et al., 2013].

Our third objective is to investigate a possible extension of the asymptotic theories and their convolution
methods to geophysical problems with uneven bottom. This has not been attempted previously in the liter-
ature, and success is by no means guaranteed. Ideally, this requires that shoaling, refraction, and diffraction
are incorporated and furthermore it involves special effects related to the motion on a sphere. Unfortu-
nately, diffraction and refraction effects are not readily incorporated in the present model, and we have
chosen to focus on the incorporation of linear shoaling and its influence on the travel time of the leading
wave. These effects are approximated by using linear shallow water theory, which is justified by the fact
that natural tsunami sources often appear with relatively mild spatial gradients. Section 7 covers the exten-
sion to uneven bottom and a special convolution procedure suited for this purpose. As a test example, we
focus on the 2011 Tohoku tsunami, and compare the convolution results with DART measurements and
with numerical results obtained from solving the nonlinear shallow water equations [Ren et al., 2013].

2. The Response to an Initial 1-D Disturbance of the Free Surface

2.1. Introduction
We consider the classical problem of linear water waves generated by an initial disturbance of the free sur-
face. A Cartesian coordinate system is adopted with the x axis located at the still water level (SWL) and with
the z axis pointing vertically upward. Hence, the fluid domain is bounded by the horizontal sea bed at
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z 5 2h and by the free surface z 5 g(x,t). Expressions will be derived in terms of nondimensional variables
where horizontal (x) and vertical (z and g) distances are scaled with the water depth h, i.e.,

X � x
h
; Z � z

h
; f � g

h
; (1)

while time (t), cyclic frequency (x), and the wave number (k) are nondimensionalized as

s � t

ffiffiffi
g
h

r
; X � x

ffiffiffi
h
g

s
; j � kh; (2)

where g is the acceleration of gravity. The linear dispersion relation for the wave propagation generally
reads

X25jtanh j;

with the associated relevant expression for X½j� being

X½j�5sign½j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jtanh j
p

: (3)

2.2. General Formulation Based on Fourier Integrals
The initial one-dimensional disturbance of the free surface is described by

f½X; 0� � F½X�; and fs½X; 0�5 0; (4)

where F[X] defines the arbitrary shape of this disturbance. As described by, e.g., Whitham [1974, section
13.5], the response to this disturbance is determined by

f1½X; s�5
ð1

21

C1½j�ðexp ½iðjX2XsÞ�1exp ½iðjX1XsÞ�Þdj; (5)

where C1[j] is the Fourier transform of the initial condition, i.e.,

C1½j�5
1

4p

ð1
21

F½X�exp ½2ijX�dX: (6)

For the special case of F½X�5d½X�, i.e., a 1-D Dirac delta-function disturbance, f1[X,s] becomes the impulse-
response function, while (6) yields

C1d½j�5
1

4p
: (7)

In the following, we consider the asymptotic behavior of the solution for s ! 1 and X=s> 0. This implies
that the backward going waves can be ignored and (5) simplifies to

f2½X; s�5
ð1

21

C1½j�exp ½2isU�dj; (8)

where

U � X½j�2ja; and a � X
s
: (9)

Note that according to (1) and (2), we have that a5x=ðt
ffiffiffiffiffiffi
gh

p
Þ. Hence, the front of the wave train, which

moves with the nondispersive shallow water celerity, corresponds to a! 1, while the dispersive tail of the
transient wave corresponds to lower values of a.

2.3. The Method of Stationary Phase for Oscillating Integrals
The method of stationary phase was first discussed by Stokes [1850] and Lord Kelvin [see Thomson, 1887]
and since then it has been used in many contexts in the literature. Good reviews of the method can be
found in, e.g., Whitham [1974] and Wong [1989].
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The objective is to approximate oscillating integrals of the type (8) for large values of s. In this case, C1[j]
will typically be slowly varying, while the phase sU will oscillate rapidly with j. This generally leads to can-
celations in the integral unless there are points ji where the phase is stationary. These stationary points are
defined by

dU
dj
½ji�50: (10)

For the present case, the principal contribution to (8) comes from the two stationary points j56j0, where
j0 satisfies

dU
dj

5Xj½j0�2a50; where Xj �
dX
dj

: (11)

We note that Xj represents the local group velocity of the wave train.

Whitham [1974, section 11.3] and Kajiura [1963] used the method of stationary phase on (8) to derive the
classical asymptotic approximation

f3½X; s�52C1½j0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
2sXj;j

s
cos 2sU½j0�1

p
4

h i
; (12)

where Xj;j denotes the second derivative of X with respect to j.

2.4. The Weakly Dispersive Solution Valid Near the Front of the Wave Train
Whitham [1974, section 13.6] and Kajiura [1963] analyzed the conditions near the front of the wave train,
where dispersion collapses and the waves become shallow water waves with j ! 0. A brief summary of
this derivation follows. First of all, a Taylor expansion about j 5 0 of the linear dispersion relation leads to
the KdV (Korteweg-de Vries) approximation

X ’ j2
1
6

j3; ) U ’ ð12aÞj2
1
6

j3; (13)

and in this case (8) simplifies to

f4½X; s�5C1½0�
ð1

21

exp ijðX2sÞ1 1
6

ij3s

� �
dj: (14)

At this point, it is useful to consider the definition of the Airy function

Ai½s� � 1
p

ð1
0

cos sw1
1
3

w3

� �
dw5

1
2p

ð1
21

exp i sw1
1
3

w3

� �� �
dw; (15)

see e.g., Vall�ee and Soares [2004]. Hence, a comparison between (15) and (14) suggests the transformations

1
3

w35
1
6

sj3 ) j 5 w
2
s

� �1=3

; (16)

sw5jðX2sÞ ) s 5 ðX2sÞ 2
s

� �1=3

52ð12aÞ21=3s2=3: (17)

This implies that (14) can be expressed as

f4½X; s�52pC1½0�
2
s

� �1=3

Ai 2ð12aÞ21=3s2=3
h i

: (18)

Figure 1 shows the spatial variation of the 1-D surface elevation as a function of a 5 X=s at time s 5 100
for the special case of an initial delta-function disturbance. We note that f3 given by (12) has a singularity
near the front of the wave train where a! 1 and Xj;j ! 0. This problem is resolved by f4 which describes
the transition from the oscillatory motion behind the front (a< 1) to the exponentially decaying motion
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beyond the front (a> 1).
However, it is clear that the
KdV dispersion relation
imbedded in f4 quickly
becomes inadequate and
the solution starts to deviate
significantly from f3 in phase
as well as in amplitude for
smaller values of a.

2.5. Uniform Asymptotic
Approximations in 1-D
The main objective of the so-
called uniform asymptotic
approximations is to trans-

form the integrand of oscillating integrals such as (8) into a simpler form allowing an analytical evaluation
of the integral with the solution being uniformly valid for the complete interval of wave numbers (i.e., from
weak dispersion to full dispersion). In contrast to the nonuniform procedures described in the previous sec-
tion (and applied by e.g., Kajiura [1963] and Whitham [1974]), the uniform procedure retains full dispersion
by mapping the variables of integration into a new set of variables while stretching the validity via the
method of stationary phase. The general concept of uniform asymptotic transformations of oscillating inte-
grals goes back to Chester et al. [1957], Ursell [1965], Bleistein [1966, 1967], Child [1975], and Ursell [1980].
More recent discussions of the technique can be found in Wong [1989], Vall�ee and Soares [2004], and Ursell
[2007]. Clarisse et al. [1995] were the first to apply this method on the Cauchy-Poisson problem and their
method for the 1-D problem will be summarized in the following.

In the frame work of Airy type solutions, U should be expressed as a cubic function. In this connection,
Clarisse et al. [1995] used the form

U½u�5eu2
1
6

u3; (19)

while Berry [2005] used the form

U½v�52rv2
1
3

v3; (20)

where u and v are new integration variables (replacing j), while e and r are functions to be determined
from matching conditions. Choosing (19) or (20) as the starting point is not important, and throughout this
work we have chosen the (u, e) formulation (19).

In the following, we shall now consider j to be a function of u, and consequently (9) can be expressed as

U½u� � X½j½u��2j½u�a: (21)

The matching of (19) and (21) now implicitly defines the new variable u.

On the basis of the transformation (19), we can replace (8) by

f5½X; s�5
ð1

21

C1½j½u��G1½u�exp is 2eu1
1
6

u3

� �� �
du; (22)

where

G1½u� �
dj
du
: (23)

The next step is to assume that C1 and G1 are slowly varying functions of u and to apply the method of sta-
tionary phase, by which the integral in (22) can be approximated by

Figure 1. The 1-D impulse-response functions corresponding to a d-function disturbance.
Results obtained as a function of a 5 X=s for s 5 100. Full line, the weakly dispersive asymp-
totic approximation f4 based on equation (18); dashed line, the classical asymptotic approxi-
mation f3 based on equation (12).
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f6½X; s�5C1½j0�G1½u0�
ð1

21

exp is 2eu1
1
6

u3

� �� �
du; (24)

where u0 defines the value of u at the first stationary point. A comparison with the definition of the Airy
function (15) now suggests the transformations

1
3

w35
s
6

u3 ) u 5 w
2
s

� �1=3

; (25)

sw52seu ) s 5 2e21=3s2=3: (26)

This implies that (24) can be expressed as

f6½X; s�52pC1½j0�G1½u0�
2
s

� �1=3

Ai 2e21=3s2=3
h i

; (27)

where C1 and G1 are defined by (6) and (23), respectively. The determination of j0, u0, e, and G1[u0] and the
accuracy of (27) will be pursued in section 4.

3. The Response to an Initial 2-D Disturbance of the Free Surface

3.1. A Radially Symmetric Disturbance of the Free Surface
The linearized problem of an initial radially symmetric disturbance of the free surface was treated by, e.g.,
Wehausen and Laitone [1960], Whitham [1974], and LeBlond and Mysak [1978]. The initial disturbance is
assumed to vary only with the radial distance R � r=h and have no angular dependence, i.e.,

f½R; 0� � F½R�; and fs½R; 0�5 0: (28)

As described by Whitham [1974, section 13.5], the surface elevation generated by this disturbance can be
determined by

f11½R; s�5
ð1
0

C2½j�J0½jR�cos ½Xs�jdj; (29)

where C2 is the Hankel transform defined by

C2½j�5
ð1
0

F½R�J0½jR�RdR: (30)

For the special case of a delta function located at the origin, F[R] is defined by

F½R�5 d½R�
2pR

: (31)

In this case, f11[X,s] becomes the impulse-response function, and (30) leads to

C2d½j�5
1

2p
: (32)

3.2. Uniform Asymptotic Approximations in 2-D
On the basis of the work by Chester et al. [1957], Ursell [1965], Bleistein [1966, 1967], and Ursell [1980], Clarisse
et al. [1995] were the first to derive a 2-D uniform asymptotic approximation to (29) combined with (31). As
a first step, they extended the integration from –1 to 1, while replacing the Bessel function J0 with the
Hankel function Hð2Þ0 of the second kind. Second, they replaced the Hankel function by its integral represen-
tation leading to the double integral

f12½R; s�5
i223=2

2p2

ð1
21

ð1
21

j 11
1
2

r2

� �21=2

exp ½isW�djdr;

with
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W � X½j�2j 11r2
� �

a; and a � R
s
:

Third, the integration variables (j, r) were replaced by the stretched variables (u, v) defined by the two
relations

eu2
1
6

u35X½j�2ja; and uv25jr2:

Fourth, these variables were replaced by a new set of stretched variables (n, k) defined by

u5aðn1kÞ; and v 5 bðn2kÞ:

With these transformations, the method of stationary phase resulted in four saddle points for (n6
0 ; k6

0 ) and
after cumbersome algebraic manipulations the surface elevation was finally expressed in terms of the prod-
uct of the Airy function and its derivative.

More recently, Berry [2005] considered the same problem, apparently being unaware of the original work
by Clarisse et al. [1995]. However, Berry pursued a much more direct and straight forward path, which we
summarize in the following. First of all, the Bessel function J0 is expressed by its integral definition

J0½jR� � 1
2p

ð2p

0

exp ½ijRcos h�dh: (33)

Second, the method of stationary phase is applied to (33) leading to the two stationary points h1 5 0 and
h25p. Now a Taylor expansion about each of these points leads to

cos h ’ 12
1
2

h2; for h ’ h1;

cos h ’ 211
1
2
ðh2pÞ2; for h ’ h2;

by which the integration in (33) can be analytically executed near each stationary point. This leads to

J0½jR� ’ 1
2p

ffiffiffiffiffiffi
p
jR

r
ð12iÞ exp ½ijR�1

ffiffiffiffiffiffi
p
jR

r
ð11iÞ exp ½2ijR�

� �

5

ffiffiffiffiffiffiffiffi
2

pjR

r
cos jR2

p
4

h i
:

(34)

We note that (34) is the classical asymptotic approximation for J0 valid for large values of jR.

Next, (34) is inserted in (29) and as a result the integrand contains two terms, representing waves propagat-
ing away from and toward the source, respectively. The latter is ignored by which we obtain the following
asymptotic approximation to (29)

f13½R; s�5
ð1
0

C2½j�j1=2

ð2pRÞ1=2
cos sU1

p
4

h i
dj; (35)

where

U½j� � X½j�2ja; a � R
s
: (36)

The next step is to introduce the uniform transformation of variables exactly as in 1-D, i.e., j is replaced by u
defined by (19). In this process, the following connection is utilized

j1=2dj5G2u1=2du; (37)

where

G2 �
dj
du

ffiffiffi
j
u

r
: (38)

The functions G2 and C2 are assumed to be slowly varying with u and are therefore estimated by their val-
ues at the stationary phase points u56u0. On this basis, the integral (35) transforms into

Journal of Geophysical Research: Oceans 10.1002/2015JC011155

MADSEN ET AL. UNIFORM FORMULATION FOR TRANSIENT WAVES 7



f14½R; s�5
C2½u0�G2½u0�
ð2pRÞ1=2

ð1
0

cos s eu2
1
6

u3

� �
1

p
4

� �
u1=2du: (39)

It turns out that this integral can be expressed in terms of Airy functions. Berry [2005] provided the result in
his equation ((5).5), but omitted the derivation, which is given here, as we do not find it completely trivial.
The starting point is to consider the following integral definition of the product of the Airy function and its
derivative

Ai½s�Ai0½s� � 1
2p

� �2 ð1
21

ð1
21

ivexp i v1wð Þs1 1
3

v31w3
� �� �� �

dvdw: (40)

Next, we introduce a coordinate transformation from (v, w) variables to (n, k) variables defined by

w5bðn1kÞ; and v 5 bðn2kÞ: (41)

The absolute value of the corresponding Jacobian determinant is 2b2. With this coordinate transformation,
it is now possible to analytically integrate the k-integral and as a result (40) simplifies to

Ai½s�Ai0½s�52
1

21=2p3=2

ð1
0

cos 22nbs2
2
3

n3b31
p
4

� �
b3=2n1=2dn: (42)

The matching of (42) and (39) now yields

u5
2

s1=2
n; s 5 2

es2=3

21=3
; b5

21=3

s1=6
;

and as a result the asymptotic surface elevation can be determined by

f15½R; s�52
2pC2½j0�G2½u0�ffiffiffiffiffi

Rs
p Ai 2e221=3s2=3

h i
Ai0½2e221=3s2=3�; (43)

where C2 and G2 are defined by (30) and (38), respectively. The determination of j0, u0, e, G1[u0], and G2[u0]
will be pursued in section 4.

4. The Governing Parameters in the Uniform Asymptotic Approximations

Before we can utilize the uniform asymptotic approximations given in (27) for 1-D and (43) for 2-D, we need
to determine j0, u0, e, G1[u0], and G2[u0] at the stationary points. The following derivation is split into three
parts: First, we concentrate on conditions behind the wave front, i.e., for 0< a< 1. Second, we focus on con-
ditions ahead of the front, i.e., for a> 1. Third, we present Taylor expansions for a ! 1. These expressions
will bridge the formulations behind and ahead of the front, and in addition they will provide practical
approximations to the general expressions.

4.1. Solutions for 0 < a < 1
In order to determine j 5 j0, we first differentiate the dispersion relation (3) with respect to j and obtain

Xj5sign½j� jsech 2j1tanh j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jtanh j
p

� �
: (44)

This is an even function of j, i.e., Xj½2j�5Xj½j� and for this reason (11) will be satisfied by j0 as well as by
2j0. We assume that j0> 0, and insert (44) in (11), which leads to the condition

j0sech 2j01tanh j0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0tanh j0
p 5a; for j0 > 0: (45)

For 0< a< 1, (45) will provide real number solutions for j0, which will obviously be a function of a.

Next, let us determine the value of u 5 u0 at the first stationary point j 5 j0. First, we differentiate (19) with
respect to u to obtain
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dU
du

5e2
1
2

u2: (46)

Second, we differentiate (21) with respect to u to obtain

dU
du

5
dj
du

Xj2að Þ: (47)

According to (11), it is clear that (47) will be zero at the first stationary point, and consequently (46) also
needs to be zero. This leads to the matching condition

e5
1
2

u2
0: (48)

Third, (19) and (21) obviously need to match for all values of u and therefore also at the first stationary point
u 5 u0. According to (48), this leads to

U½u0�5
1
3

u3
0; and U½u0�5X½j0�2j0a; (49)

by which we obtain

u0531=3 X½j0�2j0að Þ1=3; (50)

e5
1
2

32=3 X½j0�2j0að Þ2=3: (51)

With j0 being a function of a, we note that also u0 and e are functions of a.

Fourth, we need to evaluate G1[u] defined by (23). By matching (46) and (47), we obtain the general
expression

G1½u� �
dj
du

5
e2 1

2 u2

Xj2a

� �
: (52)

Toward the first stationary point, the numerator and the denominator of (52) go to zero. Consequently, we
need to Taylor-expand the numerator as well as the denominator with respect to u in the vicinity of u0 until
we get nonzero contributions. Thus, by applying L’Hôspital’s rule on (52) we obtain

Xj;j
dj
du

� �2

52u; for u 5 u0;

which leads to the result

G1½u0� �
dj
du
½u0�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0

2Xj;j½j0�

r
: (53)

Note that u0 is given by (50), while Xj,j can be determined by differentiating (44) with the result

Xj;j½j�5sign½j� 2113j2sech 4j1sech 2j 124j212jtanh jð Þ
4 jtanh jð Þ3=2

 !
: (54)

We note that Xj,j is an odd function of j, i.e., that Xj;j½2j�52Xj;j½j�.

Finally, we need to evaluate G2[u] defined by (38). By inserting (53) we obtain

G2½u0� �
ffiffiffiffiffi
j0

u0

r
dj
du
½u0�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0

2Xj;j½j0�

r
: (55)

4.2. Taylor Expansions for a fi 1
Near the front of the wave train, we have that a! 1 and j0! 0, hence we introduce the small parameter
l � 12a. To obtain a Taylor expansion of j0 in terms of l, we first expand (45) in terms of j2

0, then use suc-
cessive approximations to invert this series as j2

0 in terms of l and finally we expand the square root of this
series to obtain
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j05
ffiffiffiffiffiffi
2l

p
11

19
36

l1
1207
2592

l21
2588183
5443200

l31. . . :

� �
for l! 0: (56)

Next, we Taylor-expand u0 and e from (50) and (51) with respect to j0 and substitute (56) into the result.
This leads to

u05
ffiffiffiffiffiffi
2l

p
11

19
180

l1
25121

453600
l21

1996219
48988800

l31. . . :

� �
for l! 0; (57)

e5l 11
19
90

l1
64

525
l21

178328
1913625

l31. . . :

� �
for l! 0: (58)

Finally, we Taylor-expand G1[u0] and G2[u0] with respect to j0 by inserting (50) and (54) into (53) and (55).
By substituting (56) into the result, we obtain

G1½u0� ! 11
38
45

l1
521
567

l21
411574
382725

l31. . . :

� �
for l! 0: (59)

G2½u0� ! 11
19
18

l1
815
648

l21
1059679
680400

l31. . . :

� �
; forl! 0: (60)

4.3. Solutions for a > 1
In order to extend the formulation to the region ahead of the front, we first need to find solutions to

Xj½j0�5a; for a > 1: (61)

This requires that j0 falls on the imaginary axis, hence we introduce

j05i~j0; and u0 5 i~u0; (62)

where the tilde indicates real number variables. According to (3), (44), and (54), this leads to

X½i~j0�5i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~j0tan ~j0

p
; (63)

Xj½i~j0�5
~j0sec 2~j01tan ~j0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~j0tan ~j0
p ; (64)

Xj;j½i~j0�5i
2123~j2

0sec 4~j01sec 2~j0 114~j2
022~j0tan ~j0

� �
4 ~j0tan ~j0ð Þ3=2

 !
: (65)

This implies that ~j0 is found as the solution to

~j0sec 2~j01tan ~j0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~j0tan ~j0
p 5a; for a > 1: (66)

Next, we determine ~u0 and e by inserting (62) and (63) into (49) and (48). This leads to

~u0531=3 ~j0a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~j0tan ~j0

p	 
1=3
; for a > 1; (67)

e52
1
2

32=3 ~j0a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~j0tan ~j0

p	 
2=3
; for a > 1: (68)

Note that in contrast to j0 and u0, the continuation of e from behind the front to ahead of the front actually
takes place in the real domain.

Finally, we insert (62) and (65) into (53) and (55) and obtain

G1½u0�5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~u0

2~Xj;j½~j0�

s
; and G2½u0�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~j0

2~Xj;j½~j0�

s
; for a > 1: (69)

We note that G1 and G2 fall on the real axis also for a> 1.
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4.4. The Resulting Surface
Elevations in 1-D and 2-D
Having determined G1[u0] and G2[u0],
we can now insert (53) and (55) into
(27) and (43) to obtain the 1-D sur-
face elevation

f7½X; s�52pC1½j0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0

2Xj;j½j0�

r
2
s

� �1=3

Ai 2e21=3s2=3
h i

;

(70)

and the 2-D surface elevation

f16½R; s�52
2pC2½j0�ffiffiffiffiffi

Rs
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0

2Xj;j½j0�

r

Ai 2e221=3s2=3
h i

Ai0½2e221=3s2=3�:

(71)

We note that C1 and C2 are defined by (6) and (30), while j0, u0, and e are functions of a as defined by (45),
(50), and (51). Furthermore, we note that a � X=s in 1-D and a � R=s in 2-D.

It should be emphasized that (70) and (71) can be shown to agree with Berry [2005, equations (4.3) and
(5.6)]. Clarisse et al. [1995] focused from the very beginning on the response to delta-function disturbances,
so their expressions can in principle be retrieved by using C1d51=ð4pÞ and C2d51=ð2pÞ. There is, however,
generally a factor 2p difference between the results of Clarisse et al. and (70) and (71). Furthermore, for
some reason they did not apply (53) for G1 but promoted the approximation G1 ’ e=ð12aÞ.

Figure 2 shows the variation of j0, u0, and e as a function of a according to (45), (50), and (51). The kinks at
a 5 1 for the continuations of j0 and u0 are typical for functions jumping from the real axis to the imaginary
axis at this location.

Figure 3 shows the variation of G1[u0] as a function of a according to (53). The polynomial approximation
(59) is accurate within 0.5< a� 1. The figure also includes the approximation G1 ’ e=ð12aÞ suggested by
Clarisse et al. [1995], but this is seen to be very inaccurate and cannot be recommended.

Figure 4 shows the spatial variation of the 1-D surface elevation as a function of a 5 X=s at time s 5 100
for the special case of an initial delta-function disturbance. We compare f3 given by (12) and f7 given

by (70) and notice a remarkable
agreement for a< 0.95. This clearly
demonstrates that the uniform
transformation is able to capture
the full dispersion rather than just
the KdV dispersion which was
shown in Figure 1.

5. Convolution in One and
Two Dimensions

For simple initial disturbances such
as Gaussian distributions, it is straight
forward to determine C1[j] and C2[j]
analytically on the basis of (6) and
(30). In this case, the resulting surface
elevation can be determined either
by direct numerical integration of (8)
and (29) or from the asymptotic

Figure 2. The variation of j0 (1), u0 (2), and e (3) as a function of a 5 X=s.

Figure 3. The variation of G1[u0] as a function of a 5 X=s. (1) Full solution according
to equation (53) including extension into the complex domain according to equa-
tion (69); (2) Taylor approximation according to equation (59); and (3) the approxi-
mation proposed by Clarisse et al. [1995], i.e., e=ð12aÞ.
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approximations (70) and (71).
However, in more general
cases, C1[j] and C2[j] cannot
be determined analytically, and
here we use the delta-function
formulations combined with
convolution integrals as
described in the following.

5.1. Convolution in 1-D
To solve the 1-D problem of
an initial condition given as
f½X; 0�5F½X�, we utilize con-
volution integration based
on the impulse-response

function f7 with the delta function located at the origin. This is defined by (70) combined with C1d51=ð4pÞ.
Typically, we can assume that F½X� 6¼ 0 for Xmin � X � Xmax and identical to zero outside this interval. In
this case, the convolution integral reads

~f½X0; s�5
ðXmax

Xmin

F½X�f7 X02X; s½ �dX; (72)

where X0 is the observation coordinate, X is the integration coordinate covering the source region, and f7 is
given by (70). In order to speed up the procedure, we first create interpolation functions for e½a� and G1[u0]
covering the interval 0< a< 2.5, and second we evaluate the integral numerically as

~f½X0; s�5DX
XXmax

X5Xmin

F½X�f7 X02X; s½ �; (73)

where the increments are chosen as

DX5
Xmax 2Xmin

nx21
; (74)

with nx being the number of grid points.

5.2. Convolution in 2-D
To solve the 2-D problem of an initial condition given as f½X; Y; 0�5F½X; Y�, we utilize convolution integration
based on the radially symmetric impulse-response function f16 with the delta function located at the origin. This
is defined by (71) combined with C2d51=ð2pÞ. The convolution formulation in rectangular coordinates reads

~f½X0; Y0; s�5
ðYmax

Ymin

ðXmax

Xmin

F½X; Y� f16 R½X; Y; X0; Y0�; s½ �dXdY; (75)

where (X0, Y0) defines the observation point, (X, Y) defines the integration coordinate covering the source
region, and R defines the distance between these points given by

R½X; Y; X0; Y0�5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2X0Þ21ðY2Y0Þ2

q
: (76)

In practise, we evaluate the double integral numerically by the double summation

~f½X0; Y0; s�5DXDY
XXmax

X5Xmin

XYmax

Y5Ymin

F½X; Y� f16½R½X; Y; X0; Y0�; s�: (77)

The case is illustrated by Figure 5, where the observation point is located at O and the initial disturbance is
located within the area with corner points A, B, C, and D centered at the origin of the rectangular coordinate

Figure 4. The 1-D impulse-response functions corresponding to a d-function disturbance.
Results obtained as a function of a 5 X=s for s 5 100. Full line, the uniform (fully dispersive)
asymptotic approximation f7 based on equation (70); dashed line, the classical asymptotic
approximation f3 based on equation (12).
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system (X, Y). These corner points define the values of Xmin , Xmax ; Ymin , and Ymax , while the discrete incre-
ments are given by

DX5
Xmax 2Xmin

nx21
; DY5

Ymax 2Ymin

ny21
; (78)

with, e.g., nx and ny being the number of grid points.

One way to speed up the process is to introduce a local polar coordinate system (s, h) centered at the obser-
vation point O, i.e., at (X0, Y0). This leads to the coordinate transformation

X � X02s cos h;

Y � Y02s sin h;
(79)

where s denotes the distance from (X0, Y0) to (X, Y). Now the convolution summation can take place in dis-
crete s and h increments, e.g., within the sector of the annulus confined by the points E, F, G, and H (see Fig-
ure 5). With f16 being radially symmetric, i.e., independent of the angle h this leads to the simplification

~f½X0; Y0; s�5DsDh
XRmax

s5Rmin

Xhmax

h5hmin

F½X02s cos h; Y02s sin h�
 !

sf16½s; s�; (80)

where

�s5
Rmax 2Rmin

nR21
; Dh5

hmax 2hmin

nh21
: (81)

The limits of Rmax ; Rmin ; hmax , and hmin are readily determined from the location of the E, F, G, and H points
in Figure 5.

An alternative and even faster procedure is outlined in the following: first, the distance R between the
observation point and each of the discrete integration points within the domain of the initial disturbance is
determined. Now we have a map of associated {R, F} values representing distance and source values at all
discrete integration points. Typically, a specific value of R will occur at several grid points and therefore be
associated with several values of F. This is illustrated in Figure 6 (top), which shows the discrete values of F

as a function of the associated values
of R for the case of a Gaussian disturb-
ance. The next step is to cover the
interval from Rmin to Rmax by incre-
ments of �s (as defined by (81)) and
to sum up all F-values falling within
these discrete Ds-bins. This leads to
the accumulated source function

E½s�5
X

F½s�; (82)

which is illustrated in Figure 6 (bot-
tom) for the case of a Gaussian disturb-
ance. With this information at hand,
we can simplify the double summation
(77) to the single summation

~f½X0; Y0; s�5DXDY
XRmax

s5Rmin

E½s� f16½s; s�:

(83)

This procedure is extremely fast and
provides the resulting time series in a
few seconds.

Figure 5. Sketch illustrating the convolution procedure in 2-D. As an example, an
initial Gaussian disturbance is contained in the square with corner points A, B, C,
and D. The integration points are expressed in local polar coordinates with the
observation point O as origin. Actual convolution integration takes place within
the sector of the annulus (confined by the points E, F, G, and H).
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6. Applications on a
Constant Depth

6.1. The Case of an Initial
1-D Rectangular
Disturbance
We first consider a 1-D sharp-
edged rectangular disturb-
ance described by F[X] 5 F0

within xmin � x � xmax . This
will generate a transient wave
with a highly dispersive tail,
and as reference, we apply a
linear high-order Boussinesq
model [see e.g., Madsen et al.,
2002; Fuhrman and Bingham,
2004], which incorporates
accurate dispersion proper-
ties up to dimensionless
wave numbers of j 5 25. A
similar test case was studied
by Madsen and Sch€affer
[2010, section 7.2]. In dimen-
sional variables, we use

h0 5 4000 m, xmax 52150 km, xmin 52400 km and consider the observation point x0 5 12,000 km. This corre-
sponds to the nondimensional parameters Xmax 5237:5; Xmin 52100, and X0 5 3000. It is emphasized that
Madsen and Sch€affer used an initial amplitude of 3 m, but this was combined with a reflecting wall at the
input boundary so in the present formulation this corresponds to F0 5 6=4000 5 0.0015. The numerical Boussi-
nesq solution is computed using a fixed grid of dx 5 400 m, a time step of dt 5 2 s, and a total of 40,001 grid
points and 40,001 time steps. The convolution solution is obtained by using (73) and (74) with nx 5 200.

Figures 7a and 7b show a comparison of the linear Boussinesq solution (dashed line) and the convolution
solutions (full gray lines). The top figure shows the performance of the nonuniform weakly dispersive formu-

lation ~f4 (given by (18)). This
is fairly accurate for the first
60 min of the time series, but
beyond this point discrepan-
cies in phase and amplitude
show up. The bottom figure
shows the performance of
the fully dispersive uniform
formulation ~f7 (given by
(70)). This is obviously more
accurate than the nonuni-
form formulation. The differ-
ences between the two
convolution solutions increase
significantly when we con-
tinue the time series in Fig-
ures 8a and 8b, now covering
from 1150 to 1300 min.
According to the top figure,
the nonuniform formulation
is now completely off in
amplitude and phase, while

Figure 6. The discrete values of an initial Gaussian disturbance F shown as a function of the
associated distance R from the selected observation point to each of the integration points.
(top) F as a function of R; (bottom) sum of F within discrete R bins based on equation (82).

Figure 7. First part of the time series of the surface elevation due to a monopole source.
Numerical simulation with linear high-order Boussinesq model is shown as the dashed lines.
The convolution solution based on the nonuniform KdV approximation f4 is shown as the full
line in the top figure. The convolution solution based on the uniform approximation f7 is
shown as the full line in the bottom figure.
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the uniform formulation,
shown in the bottom figure,
is in very good agreement
with the Boussinesq simula-
tion. This confirms the accu-
racy of the uniform
asymptotic approximation
versus the conventional KdV
approximation.

6.2. The Case of an Initial
2-D Square Disturbance
We continue with a square
sharp-edged disturbance in
2-D, which again is expected
to generate a transient wave
with a highly dispersive tail.
The initial disturbance is
shown in Figure 5, where the
points A, B, C, and D are

located at (b1, b1), (b1, –b1), (2b1, 2b1), and (2b1, b1), with b1 5 32 km and where the initial amplitude
within this area is a1 5 16 m. The volume of this initial disturbance is therefore 4a1b2

1. The water depth is
constant and equal to h 5 4.0 km. The location of the observation points are generally specified by

x05r0cos u0; y0 5 r0sin u0: (84)

Again, we use the linear high-order Boussinesq model as reference, but this time we also include computations
based on the nondispersive linear shallow water model [Ren et al., 2013] in order to illustrate the influence of
dispersion. Both models are set up to cover the first quadrant of the problem using 2000 by 2000 grid points
with grid size dx 5 dy 5 1.0 km and 3000 time steps with step size dt 5 5.0 s. A perspective snapshot of the
computed surface elevation is shown in Figure 9.

The convolution method covers the initial disturbance area with nx 5 ny 5 100 grid points in rectangular coor-
dinates and nR5nh5100 grid points in polar coordinates. Double summation of (77) in rectangular coordi-
nates takes approximately 400 s, while double summation of (80) in polar coordinates takes about 30 s.
Finally, the single summation (83) takes about 4 s. Results obtained by the three different convolution meth-
ods are virtually identical and consequently only the single summation results are shown.

Figures 10a–10d show the computed temporal variation of the surface elevation at four locations defined
by r0 5 600 km and u050; p=16, p=8, and p=4, respectively. We notice that the dispersive tail of the wave

train is much stronger for small
angles in contrast to the case of
u05p=4 where it is almost
absent. The convolution solu-
tion based on (83) is shown as
gray lines, the linear Boussinesq
results as black lines and the lin-
ear shallow water results as
dashed lines. Generally, there is
very little difference between
the convolution solution and
the Boussinesq results. We
notice that the nondispersive
shallow water model can only
represent the leading wave, and
this is typically overestimated if
the tail is present in the

Figure 8. Second part of the time series of the surface elevation due to a monopole source.
Description as in Figure 7.

Figure 9. Snapshot of the surface elevation computed by the Boussinesq model for an ini-
tial square disturbance released at the lower left corner. Model dimensions are 2000 by
2000 grid points with a grid size of 1 km and a water depth of 4 km.
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reference solution (as e.g., for
u050), while it is more accurate
if the tail is small (as e.g., for
u05p=4).

Figures 11a–11c show the
computed temporal variation
of the surface elevation at
another three locations
defined by u050, and r0 5 400,
800, and 1200 km, respectively.
Small discrepancies between
the convolution solution and
the linear Boussinesq results
can be seen at the first loca-
tion, while the solutions are
almost identical further away
from the origin. Again, we can
conclude that the uniform
asymptotic approximation is
very accurate. The linear shal-
low water model is signifi-
cantly off at all three locations.

6.3. The Case of an Initial 2-D
Gaussian Disturbance
Next, we consider the case of a
blunt Gaussian disturbance
defined by

F½r�5a2exp 2
r2

b2
2

� �
or

F½x; y�5 a2exp 2
x21y2

b2
2

� �� �
:

(85)

The limiting points A, B, C, and
D (see Figure 5) are now
located at (3b2, 3b2), (3b2,

23b2), (23b2, 23b2), and (23b2, 3b2) and to obtain the same volume as in the previous square case we
choose

b25

ffiffiffi
2
3

r
b1; a25

6
p

a1; (86)

with b1 5 32 km, a1 5 16 m, and h 5 4 km. Convolution covers the initial disturbance area with
nx 5 ny 5 100 grid points in rectangular coordinates and nR5nh5100 grid points in polar coordinates.

With the initial condition being radially symmetric, we now have several options for calculating the impact.
First of all, (30) integrates to

C2½j�5
1
2

a1b2
1

h3
exp 2

b2
1j

2

4h2

� �
; (87)

which makes it possible to use direct numerical integration of (29). This procedure was recently pursued by
Tobias and Stiassnie [2011]. Figure 12a shows this solution (full black line) at the observation point r0 5 600 km
(i.e., R0 5 150) and u05 p=4. The linear high-order Boussinesq simulation (setup as in the previous square case)
is shown as dashed black line. The agreement is outstanding. We have checked the Boussinesq result at other
angles but for approximately the same distance, and as expected these results are almost identical due to the
axis-symmetry of the source.

Figure 10. (a–d) Temporal variation of the surface elevation due to an initial square dis-
turbance in 2-D. Results obtained at the observation points defined by equation (84). Gray
line, the single convolution summation based on equation (83); black line, results obtained
by numerical simulation based on a Boussinesq model; dashed line, numerical simulation
based on the linear shallow water equations.
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As a second possibility, we can
use convolution by double sum-
mation in rectangular coordi-
nates, i.e., (77), convolution by
double summation in polar coor-
dinates, i.e., (80) or convolution
by single summation, i.e., (83).
Generally, these convolution
methods are utilizing C2d51=ð2
pÞ combined with the uniform
approximation f16 (defined by
(71)). As concluded in the previ-
ous test case, results obtained
by the three different convolu-
tion methods are virtually identi-
cal and consequently only the
single summation results are
shown. Figure 12b shows that
the uniform convolution solution
(dashed line) is in excellent
agreement with the direct
numerical integration (full line).

Notice that due to the blunt-
ness of the Gaussian disturb-
ance, only a leading wave is
seen and the dispersive tail is
practically missing. Obviously,

this means that there is no need for the full dispersion incorporated in the uniform method. To illustrate
this point, we recalculate the single summation convolution with the nonuniform weakly dispersive version
of (71), which reads

f17½a; s�52
1

s
ffiffiffi
a
p Ai 2ð12aÞ221=3s2=3

h i
Ai0½2ð12aÞ221=3s2=3�:

Figure 12c shows that this result is also in excellent agreement with (29).

As a final possibility, we can use f16 (defined by (71)) directly as an analytical expression with C2, defined by
(87) and evaluated at the stationary points j 5 j0. This is by far the fastest method for Gaussian disturban-
ces. However, Figure 12d shows that it leads to a significant overestimate and phase-shift of the leading
wave compared to the direct numerical integration. This may come as a surprise considering that Berry
[2005] found excellent agreement with numerical integration in all his test cases. The reason is, however,
that Berry only considered very narrow Gaussian shapes. With the present, much wider, Gaussian shape, the
accuracy of this procedure is poor, although it gradually improves with increasing distances from the event.
For the present source, we have found that this method overestimates the peak of the leading wave by
60% for r0 5 600 km, 32% for r0 5 1200 km, 19% for r0 5 2400 km, 14% for r0 5 3600 km, and 10% for
r0 5 6000 km.

Even though the relatively wide Gaussian disturbance generates a transient wave with almost no dis-
persive tail in the near field (as seen in Figures 12a–12d), the dispersive tail will gradually grow dur-
ing the propagation over large distances. To illustrate this point, Figures 13a–13c show a comparison
of the different solutions at the observation point r0 5 6000 km (i.e., R0 5 1500) and u05 p=4. Figure
13a shows again an excellent agreement between the direct numerical integration and the single
summation convolution combined with the uniform expression f16. In contrast, Figure 13b shows that
the single summation convolution combined with the nonuniform expression f17 starts to become

Figure 11. (a–c) Temporal variation of the surface elevation due to an initial square
disturbance in 2-D. Description as in Figures 10a–10d.
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inaccurate. Finally, Figure 13c
shows that the direct use of
(71) with (87) starts to
become more accurate, but
even with such a large dis-
tance to the event discrepan-
cies can still be seen. We
therefore do not recommend
this method. Speedwise the
direct numerical integration
takes about 200–400 s, while
the single summation convo-
lution (83) takes about 3–5 s.

7. Convolution
Formulation for
Geophysical Problems

7.1. Extension of the
Convolution Method to an
Uneven Bottom
Geophysical large-scale prob-
lems call for a number of modi-
fications of the methods
presented so far, partly because
the waves propagate on the
surface of a sphere, and partly

because the water depth is not

constant.

The first issue is related to dis-
tances on a curved surface and
it is easily incorporated in the
model: locations are typically
defined in spherical coordi-
nates, e.g., longitude/latitude
degrees (h, u) and the radius of
the Earth (RE 5 6,371,000 m).
These are related to the Carte-
sian coordinate system by

x; y; zð Þ5RE cos ½ucos h; cos usin h; sin u�ð Þ: (88)

The shortest curved distance between two locations (A and O) on the sphere is along the segment of the
great circle joining them and it is determined by

rAO5/AORE ; (89)

where /AO defines the angle ACO (in radians) with C being the center of the sphere. This angle is deter-
mined by

cos ½/AO�5cos ½uA�cos ½uO�cos ½hA2hO�1sin ½uA�sin ½uO�: (90)

The second issue is related to geometrical spreading and it is also easily incorporated in the model: for a dis-
turbance radiating from a point source on a flat surface, the conservation of energy flux along the perimeter
of the expanding circle will make the wave amplitude decay with the distance to the power 21/2. This feature
is clearly incorporated in (71). However, when the disturbance moves on a sphere, the effective perimeter of

Figure 12. (a–d) Temporal variation of the surface elevation due to an initial Gaussian dis-
turbance in 2-D. Results are obtained at the location r0 5 600 km from the center of the ini-
tial disturbance on a constant depth of h 5 4 km. All figures show the direct integral
solution as a full gray line. This is compared to the numerical Boussinesq simulation in Fig-
ure 12a (black dashed); the uniform single summation convolution in Figure 12b (black
dashed); the corresponding nonuniform single summation convolution in Figure 12c
(black dashed); and the direct analytical solution in Figure 12d (black dashed).
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the small circle will be 2pRE

sin ½/AO� rather than 2prAO

and therefore the response
function (71) needs to be mul-
tiplied by the spreading factor

aAO5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/AO

sin ½/AO�

s
: (91)

The third, and most impor-
tant, issue is related to
the fact that the water depth
h½h;u� is generally not
constant and as a result
shoaling, refraction, and dif-
fraction may be important.
Diffraction can only be incor-
porated for idealized canoni-
cal bathymetries and even in
this case it is not a trivial task
[see e.g., Berry, 2007]. Refrac-
tion is also very difficult to
incorporate as it would
require that we track each
radiating beam from source
to observation point. We
have therefore chosen to
ignore refraction/diffraction
and focus on the incorpora-
tion of linear shoaling and
its influence on the travel
time of the leading wave.

As a starting point, we assume that each discrete source point (A) will result in a wave disturbance travelling
along a straight transect of the bathymetry from A to the relevant observation point O. This is obviously a
crude approximation, which may be violated in case of refraction (and diffraction). We resolve the transect
with typically N 5 300–500 discrete points and integrate the linear shallow water celerity to obtain the fol-
lowing estimate of the arrival time (travel time) of the first disturbance

tAO5
rAO

N

XN

j50

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh½hj; uj �

q ; (92)

where

hj � hO1
j

N
ðhA2hOÞ; uj � uO1

j
N
ðuA2uOÞ: (93)

The corresponding mean water depth (dAO) associated with each transect is now determined from

ffiffiffiffiffiffiffiffiffiffi
gdAO

p
5

rAO

tAO
: (94)

Finally, linear shoaling along each transect is approximated by Green’s law, i.e.,

bAO5
h½hO;uO�
h½hA;uA�

� �21=4

: (95)

We emphasize that this approach is based on nondispersive linear shallow water theory. This is to some
extent justified by the fact that natural tsunami sources often appear with relatively mild spatial

Figure 13. (a–c) Temporal variation of the surface elevation due to an initial Gaussian disturb-
ance in 2-D. Results are obtained at the location r0 5 6000 km from the center of the initial dis-
turbance on a constant depth of h 5 4 km. All figures show the direct integral solution as a full
gray line. This is compared to the uniform single summation convolution in Figure 13a (black
dashed); the corresponding nonuniform single summation convolution in Figure 13b (black
dashed); and the direct analytical solution in Figure 13c (black dashed).
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gradients leading to relatively
weak dispersion in the leading
waves. With this in mind, there is
no reason to expect that the
resulting uneven bottom version
of the uniform asymptotic approxi-
mation will perform any better

than a version based on the classi-

cal nonuniform asymptotic

approximation. At this point, our

goal is simply to investigate the

ability of these models to predict

the leading waves of the geophys-

ical tsunami.

The fourth issue is the grid resolu-
tion of the source region: This is
typically given in longitude/latitude
degrees as

Dh5
hmax 2hmin

nh21

� �
; Du5

umax 2umin

nu21

� �
; (96)

and we need to convert it, first to meters and second by normalizing with the mean water depth. This leads
to

DX5
cDh
dAO

cos ½uA�; DY5
cDu
dAO

; c5
2pRE

360
: (97)

Figure 14. Perspective plot of the UCSB source from the 2011 Tohoku tsunami in Japan.

Figure 15. The local bathymetry with an overlay of contours from the UCSB source from the 2011 Tohoku tsunami in Japan. Positive/nega-
tive source values shown as red/green contours.
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Note that (89)–(97) should be applied in each discrete source point A with coordinates (hA;uA) to provide maps
of, e.g., distance, travel time, mean depth, spreading index, shoaling index, and local grid resolution for any spe-
cific choice of the observation point O. As a consequence, we modify the original source map FA as follows

FAO5
c2DhDucos ½uA�

d2
AO

aAObAOFA: (98)

The impulse-response function f16 was defined by (71) as a function of R and s, but fundamentally it is a
function of a and s. On a constant depth, a is defined as

a5
R
s
; where R5

r
h0

and s 5 t

ffiffiffiffiffi
g

h0

r
;

Figure 16. The Pacific including location of DART measurements. Source region indicated as a star.

Figure 17. The accumulated source as a function of travel time for DART 21401, 21415, and 52402. E is determined by equation (102).
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but on an uneven bottom, we replace h0 by dAO and r by rAO, which leads to

a½hA;uA; t�5 tAO½hA;uA�
t

; and s½hA;uA; t�5 t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g
dAO½hA;uA�

r
: (99)

On this basis, we modify the double summation convolution (77) to

gO½t�5
Xhmax

hA5hmin

Xumax

uA5umin

FAO½hA;uA� f16 a; s½ �; (100)

where a and s are determined by (99) and where gO[t] is the resulting surface elevation (in meters) at the
observation point O.

As long as the conversion from t to s depends on the local mean depth dAO in the source area, we cannot
simplify the double summation convolution to a single summation convolution. However, often the varia-
tion of dAO is quite limited, and if this is the case we can use the approximation

s½t� ’ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

dAO½hpeak;upeak �

s
; (101)

where (hpeak ;upeak) defines the location of the peak source. This leads to the following simplifications: first,
we consider the map of associated {tAO, FAO} values representing arrival time and source values at all dis-
crete source points. Second, we cover the interval from tmin to tmax by increments of �s and sum up all
FAO-values falling within these discrete Ds-bins. This leads to the accumulated source function

E½s�5
X

FAO½s�; where tmin � s � tmax : (102)

The resulting single summation convolution reads

Figure 18. (a–f) Surface elevation at near-field DART buoys due to the 2011 Tohoku tsunami. Black, DART measurements; red, single summation convolution; and green, numerical simu-
lation based on the NSW equations.
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gO½t�5
Xtmax

s5tmin

E½s� f16
s
t
; s

h i
; (103)

where s is given by (101). Again, this is an extremely fast procedure which can provide the resulting time
series in a matter of seconds.

7.2. Applications on the 2011 Japan Tsunami
In order to test the validity of our convolution approach extended to uneven bottom, we study the 2011
Japan tsunami. For this purpose, we have chosen to apply the UCSB source by Shao et al. [2011] covering
the longitude/latitude area of 140� � hA � 145� and 35� � uA � 41� with 40,000 grid points. Ren et al.
[2013] used the same source for their simulations with a model based on the nonlinear shallow water
(NSW) equations, and their results make a good benchmark in combination with the variety of deep water
DART measurements in the Pacific.

The UCSB source is instantaneously triggered at 2.46 P.M. JST (05.46 UTC) on 11 March 2011. The maxi-
mum elevation specified by this source is 15.88 m and occurs at ðhpeak ;upeakÞ5ð143:593; 38:5578Þ. Figure
14 shows a perspective plot of the UCSB source given in meters as a function of the longitude/latitude
coordinates, while Figure 15 shows the local bathymetry in the source region with the overlay of the
source contours. As observation points, we consider the following deep water DART buoys: 21418, 21401,

21419, 21413, 21415, 52402,
51407, 46404, 46411, and
51406, which are located as
indicated in Figure 16. For each
of these observation points,
the procedure defined by (89)–
(101) is executed. As an exam-
ple, Figures 17a–17c show the
modified and accumulated
source E determined by (102)
and (98) as a function of the
travel time to the observation
points DART 21401, 21415, and
52402. Generally, we have used
double summation as well as
single summation convolution
and there is hardly any differ-
ence for these cases, so only
the single summation results
are shown in the following.

Figures 18a–18f focus on the
near-field DART bouys 21418,
21401, 21419, 21413, 21415,
and 52402, which are reached
by the tsunami within 0.5–3.5 h
of travel time. Observations
(black) are compared with the
convolution results (red) and
the NSW simulations (green) by
Ren et al. [2013]. In stations
21401 and 21413, the two mod-
els agree quite well and they
are both in pretty good agree-
ment with the measurements.
In stations 21415 and 52402,
the amplitude of the leading

Figure 19. (a–d) Surface elevation at the far-field DART buoys due to the 2011 Tohoku tsu-
nami. Black, DART measurements; red, single summation convolution; and green, numeri-
cal simulation based on the NSW equations.
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wave tends to be overestimated by the convolution model, while it is smaller in the NSW simulations
and thus in better agreement with the measurements. This trend is in contrast to our earlier comparison
of the two models involving propagation on a constant depth (see Figures 10a–10d and 11a–11c). We
assume that the reason is refraction effects, which are omitted in the convolution method. The arrival times
of the two models are almost the same and typically slightly earlier than the observations. Overall, we may
conclude that both models are applicable in the near field.

Figures 19a–19d focus on the far-field DART bouys 51407, 46404, 46411, and 51406, which are reached by
the tsunami within 7.5–14 h of travel time. At stations 51407 and 46411, the convolution calculations (red)
and the NSW simulations (green) deviate significantly in amplitude as well as in arrival time, and both are
quite different from the measurements (black). The fact that the two calculations deviate so much again
implies again that refraction (diffraction) effects cannot be ignored in the far field. The convolution
approach assumes that disturbances travel along transects connecting the source points and the observa-
tion points, and while this is correct on a flat bottom it is not necessarily a good approximation on a uneven
bottom, where waves may take different paths. Furthermore, due to refraction, a wave signal radiating in all
directions from a point source may arrive at the observation point from several directions and with different
time lags, and this is again not taken into account by the convolution model. We conclude that the convolu-
tion model is not applicable in the far field if significant refraction and diffraction effects are present.

On the other hand, it should also be emphasized that the far-field NSW model results are far from impressive.
Løvholt et al. [2012] used a different source distribution and achieved much better agreement, e.g., at location
51407. They modeled the Tohoku tsunami with a linear weakly dispersive Boussinesq model and a linear non-
dispersive shallow water model and both sets of results were generally found to be superior to the results by
Ren et al. [2013]. This clearly implies that the UCSB source used in the present work is not sufficiently accurate.

8. Summary and Conclusion

In this work, we have presented a semianalytical method for the linear and fully dispersive propagation of
waves over constant depth due to an initial surface displacement. In the first part (sections 2–4), we have
rederived impulse-response functions for the 1-D and 2-D linear Cauchy-Poisson problem on a constant
depth. The derivation utilizes integral formulations combined with the method of stationary phase, the
method of uniform approximations, and various Airy integral formulations. The resulting formulation is very
efficient and highly accurate, incorporating full dispersion.

In the second part (sections 5 and 6), we have presented three different convolution techniques in order to
deal with initial surface elevations of arbitrary shape on a constant depth. The most efficient of these techni-
ques effectively reduces the 2-D problem to a 1-D problem and determines the solution within a few seconds
on a standard desktop computer. The procedure is first tested on a 1-D rectangular disturbance and a 2-D
square disturbance. Both events are sharp edged and generate a transient wave with a highly dispersive tail,
and they are therefore well suited to test the dispersion properties of the uniform asymptotic approximations.
Results are compared to numerical simulations with a linearized high-order Boussinesq model, and the agree-
ment is found to be excellent. In comparison, numerical simulations with the linear shallow water model fail
to capture the dispersive tail as well as the temporal development of the leading waves.

Second, we consider the case of a wide Gaussian disturbance in 2-D, which allows for a direct numerical inte-
gration, a direct analytical formulation, and three different convolution formulations. In the near field, this case
will result in transient waves dominated by a single leading wave and with almost no dispersive tail. This
implies that the classical nonuniform and weakly dispersive formulations of Kajiura [1963] and Whitham [1974]
will do acceptably for this case, which is confirmed by our calculations. In the far field, however, the dispersive
tail will grow and the nonuniform formulation will start to become inaccurate. Hence, we conclude that even
for rather blunt disturbances, dispersion will eventually play a role. We conclude that the proposed single sum-
mation convolution method combined with the uniform asymptotic impulse-response function is superior in
terms of flexibility, speed, and accuracy for linear fully dispersive transient problems on a constant depth.

Finally, we have made a first effort to extend the convolution method to geophysical problems (section 7). Vari-
ous effects associated with the motion on a sphere and the motion over an uneven bottom have been incor-
porated. Of these, the uneven bottom is by far the most problematic to incorporate. In our extension, we have
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neglected refraction/diffraction while approximating shoaling via linear shallow water theory. This leads to fairly
simple estimates of travel time and travel paths connecting the source and observation points by straight
transects. The modified convolution procedure has been tested on data from the 2011 Japan tsunami from 10
DART buoys in the Pacific and it has been compared to NSW simulations based on the same tsunami source. It
turns out that results agree fairly well with observations within the near field, i.e., for locations within 0.5–3.5 h
of travel time. It is, however, also clear that far-field results (within 7.5–14 h) are quite poor: the travel time is
clearly underestimated and the time signals deviate from observations as well as from the NSW simulations.
We conclude that far-field locations are quite sensitive to refraction (and diffraction) effects, which make the
disturbances travel along a diversity of paths before reaching the observation point. Such effects are important
to recognize, though they are unfortunately beyond the reach of the present convolution procedure.
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